MMP20 cleaves E-cadherin and influences ameloblast development.
نویسندگان
چکیده
Dental enamel development occurs in stages as observed by the changing morphology of the ameloblasts that are responsible for enamel formation. During the secretory stage of development, proteins including MMP20 are secreted into the enamel matrix. MMP20 is required for proper enamel formation as mutation of the Mmp20 gene causes autosomal recessive amelogenesis imperfecta. Here, we examined in detail the morphology of the Mmp20-null ameloblast cell layer. Intriguingly, we found that the Mmp20-null mouse secretory stage ameloblasts retract their Tomes' processes as if preparing to enter the maturation stage but later reextend their Tomes' processes as if resuming the secretory stage. We also demonstrated that MMP20 cleaves epithelial cadherin, i.e. E-cadherin. Cadherins are transmembrane proteins with extracellular domains that provide adhesive contacts between neighboring cells. Their intracellular domains bind to the cell cytoskeleton through catenins, including β-catenin. When specific MMPs cleave the cadherin extracellular domain, β-catenin is released and may locate to the cell nucleus as a transcription factor. Therefore, MMP20 may influence ameloblast developmental progression through hydrolysis of cadherin extracellular domains with associated release of transcription factor(s).
منابع مشابه
Murine matrix metalloproteinase-20 overexpression stimulates cell invasion into the enamel layer via enhanced Wnt signaling
Matrix metalloproteinase-20 (MMP20) is expressed by ameloblasts in developing teeth and MMP20 mutations cause enamel malformation. We established a stably transfected Tet-Off Mmp20-inducible ameloblast-lineage cell line and found that MMP20 expression promoted cell invasion. Previously, we engineered transgenic mice (Tg) that drive Mmp20 expression and showed that Mmp20(+/+)Tg mice had soft ena...
متن کاملComparison of two mouse ameloblast-like cell lines for enamel-specific gene expression
Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of e...
متن کاملE-Cadherin Can Replace N-Cadherin during Secretory-Stage Enamel Development
BACKGROUND N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we aske...
متن کاملThe Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation.
The mouse incisor is a remarkable tooth that grows throughout the animal's lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation...
متن کاملMatrix Metalloproteinase-20 Over-Expression Is Detrimental to Enamel Development: A Mus musculus Model
BACKGROUND Matrix metalloproteinase-20 (Mmp20) ablated mice have enamel that is thin and soft with an abnormal rod pattern that abrades from the underlying dentin. We asked if introduction of transgenes expressing Mmp20 would revert this Mmp20 null phenotype back to normal. Unexpectedly, for transgenes expressing medium or high levels of Mmp20, we found opposite enamel phenotypes depending on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cells, tissues, organs
دوره 194 2-4 شماره
صفحات -
تاریخ انتشار 2011